Abstract

Case Study

An Uncommon Case Report of Hypothyroidism, Type 1 Diabetes Mellitus, and Systemic Lupus Erythematosus with an Immunosuppressive Consequence: A Case Report

Arif Hoda*, Shruti R Shinde, Avinash Chaudhari, Sameer Vyahalkar, Amar Kulkarni, Pooja Binani and Amit Nagrik

Published: 27 August, 2024 | Volume 8 - Issue 2 | Pages: 118-123

An autoimmune condition known as Systemic Lupus Erythematosus (SLE) affects several systems and manifests itself in a variety of ways. It is far more common among young women who are fertile.
It has been demonstrated that a mix of environmental and genetic variables may trigger immunological responses, triggering T and B cells, and leading the B cells to overproduce pathogenic autoantibodies and dysregulate cytokines, which ultimately result in harm to many organs and tissues. One feature of SLE is the presence of antibodies against cytoplasmic and nuclear antigens. An autoimmune illness is also type 1 diabetes. β-cell antibodies (Ab) and other antibodies that cause the autoimmune death of the pancreatic β-cells, which make insulin, are part of the multifactorial pathophysiology of type 1 diabetes mellitus (T1DM).
Immunosuppression is the therapy for systemic lupus erythematosus (SLE), and diabetes itself compromises immunity, making infections more opportunistic. We came across an unusual instance of a patient with SLE, T1DM, hypothyroidism on immunosuppression who subsequently acquired pulmonary TB.
Key phrase: Autoimmune diseases such as type 1 diabetes mellitus (T1DM) and Systemic Lupus Erythematosus (SLE).

Read Full Article HTML DOI: 10.29328/journal.jcn.1001138 Cite this Article Read Full Article PDF

References

  1. Vaillant AA, Goyal A, Varacallo M. Systemic lupus erythematosus. StatPearls; 2022.
  2. Karrar S, Cunninghame Graham DS. Abnormal B cell development in systemic lupus erythematosus: what the genetics tell us. Arthritis Rheumatol. 2018;70(4):496. Available from: https://doi.org/10.1002/art.40396
  3. Didier K, Charras A, Daïen CI, Toquet S, Robbins A, Antonicelli F, et al. Autoantibodies associated with connective tissue diseases: what meaning for clinicians? Front Immunol. 2018;9:541. Available from: https://doi.org/10.3389/fimmu.2018.00541
  4. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69-82. Available from: https://doi.org/10.1016/s0140-6736(13)60591-7
  5. Pihoker C, Gilliam LK, Greenbaum CJ, et al. Autoantibodies in diabetes. Diabetes. 2005;54(Suppl 2). Available from: https://doi.org/10.2337/diabetes.54.suppl_2.S52
  6. Taplin CE, Barker JM. Autoantibodies in type 1 diabetes. Autoimmunity. 2008;41(1):11-18. Available from: https://doi.org/10.1080/08916930701619169
  7. Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev. 2016;15(7):644-648. Available from: https://doi.org/10.1016/j.autrev.2016.02.017
  8. Kahaly GJ, Frommer L, Schuppan D. Celiac disease and glandular autoimmunity. Nutrients. 2018;10(7):814. Available from: https://doi.org/10.3390/nu10070814
  9. Barker JM. Type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening. J Clin Endocrinol Metab. 2006;91(4):1210-1217. Available from: https://doi.org/10.1210/jc.2005-1679
  10. Kota SK, Kumar KV, Reddy PV, Kota SK, Modi KD. Clinical profile of coexisting conditions in type 1 diabetes mellitus patients. Diabetes Metab Syndr Clin Res Rev. 2012;6(2):70-76. Available from: https://doi.org/10.1016/j.dsx.2012.08.006
  11. Sota S, Umezawa Y, Nakajima A, Insalaco A, Sfriso P, de Vita S, et al. Anakinra drug retention rate and predictive factors of long-term response in systemic juvenile idiopathic arthritis and adult onset still disease. Front Pharmacol. 2019;10:918. Available from: https://doi.org/10.3389%2Ffphar.2019.00918
  12. Fu SM, Wang P, Kavanaugh A, et al. Anti-dsDNA antibodies are one of the many autoantibodies in systemic lupus erythematosus. F1000Research. 2015;4(F1000 Faculty Rev). Available from: https://doi.org/10.12688/f1000research.6875.1
  13. Flechsig A, Culemann U, Schneider M, Strauss R, Klotsche J, Dähnrich C, et al. What is the clinical significance of anti-Sm antibodies in systemic lupus erythematosus? A comparison with anti-dsDNA antibodies and C3. Clin Exp Rheumatol. 2017;35(4):598-606. Available from: https://pubmed.ncbi.nlm.nih.gov/28281463/
  14. Orozco G, Dota M, Muñoz J, Zhernakova S, Roep BO, González-Gay MA, et al. Analysis of a functional BTNL2 polymorphism in type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Hum Immunol. 2005;66(12):1235-1241. Available from: https://doi.org/10.1016/j.humimm.2006.02.003
  15. Cortes S, Salazar-Cardozo C, Jara LJ, Isenberg D. Diabetes mellitus complicating systemic lupus erythematosus–analysis of the UCL lupus cohort and review of the literature. Lupus. 2008;17(11):977-980. Available from: https://doi.org/10.1177/0961203308091539
  16. Passeron T, Ortonne JP. Physiopathology and genetics of vitiligo. J Autoimmun. 2005;25:63-68. Available from: https://doi.org/10.1016/j.jaut.2005.10.001
  17. Kordonouri O, Hartmann R, Mohnike K, Grüters-Kieslich A, Grabert M, Holl RW. Thyroid autoimmunity in children and adolescents with type 1 diabetes: a multicenter survey. Diabetes Care. 2002;25(8):1346-1350. Available from: https://doi.org/10.2337/diacare.25.8.1346
  18. Barera G, Wolf J, Bazzigaluppi E, et al. Occurrence of celiac disease after onset of type 1 diabetes: a 6-year prospective longitudinal study. Pediatrics. 2002;109(5):833-838. Available from: https://doi.org/10.1542/peds.109.5.833
  19. Deng Y, Tsao BP. Genetics of human SLE. In: Wallace DJ, Hahn BH, editors. Dubois' Lupus Erythematosus and Related Syndromes. 8th ed. Philadelphia: Elsevier. 2019;54-68.
  20. Odendahl M, Mei H, Radbruch A, Feist E, Hiepe F, Burmester GR, et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol. 2000;165(10):5970-5979. Available from: https://doi.org/10.4049/jimmunol.165.10.5970
  21. Pinkse GG, Tysma OH, Bergen CA, Kester MG, Ossendorp F, van Veelen PA, et al. Autoreactive CD8 T cells associated with β cell destruction in type 1 diabetes. Proc Natl Acad Sci U S A. 2005;102(51):18425-18430. Available from: https://doi.org/10.1073/pnas.0508621102
  22. Suárez-Fueyo A, Bradley SJ, Tsokos GC. T cells in systemic lupus erythematosus. Curr Opin Immunol. 2016;43:32-38. Available from: https://doi.org/10.1016/j.coi.2016.09.001
  23. Nakayamada S, Tanaka Y. Clinical relevance of T follicular helper cells in systemic lupus erythematosus. Expert Rev Clin Immunol. 2021;17(10):1143-1150. Available from: https://doi.org/10.1080/1744666x.2021.1976146
  24. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716-730. Available from: https://doi.org/10.1038/nrrheum.2016.186
  25. Giang S, La Cava A. Regulatory T cells in SLE: biology and use in treatment. Curr Rheumatol Rep. 2016;18:1-9. Available from: https://doi.org/10.1007/s11926-016-0616-6
  26. Mellor-Pita S, Citores MJ, Castejon R, Tutor-Ureta P, Yebra-Bango M, Andreu JL, et al. Decrease of regulatory T cells in patients with systemic lupus erythematosus. Ann Rheum Dis. 2006;65(4):553-554. Available from: https://doi.org/10.1136/ard.2005.044974
  27. Wong FS, Wen L, Tang M, Ramanathan M, Visintin I, Daugherty J, et al. Investigation of the role of B-cells in type 1 diabetes in the NOD mouse. Diabetes. 2004;53(10):2581-2587. Available from: https://doi.org/10.2337/diabetes.53.10.2581
  28. Jenks SA, Sanz I. Altered B cell receptor signaling in human systemic lupus erythematosus. Autoimmun Rev. 2009;8(3):209-213. Available from: https://doi.org/10.1016/j.autrev.2008.07.047
  29. Mak AN, Kow NY. The pathology of T cells in systemic lupus erythematosus. J Immunol Res. 2014;2014:690740. Available from: https://doi.org/10.1155/2014/419029
  30. Clark M, Adams S, Collins J, et al. The role of T cell receptor signaling in the development of type 1 diabetes. Front Immunol. 2021;11:615371. Available from: https://doi.org/10.3389%2Ffimmu.2020.615371
  31. Cook HT, Botto M. Mechanisms of disease: the complement system and the pathogenesis of systemic lupus erythematosus. Nat Clin Pract Rheumatol. 2006;2(6):330-337. Available from: https://doi.org/10.1038/ncprheum0191
  32. Ajjan RA, Schroeder V. Role of complement in diabetes. Mol Immunol. 2019;114:270-277. Available from: https://doi.org/10.1016/j.molimm.2019.07.031
  33. Chyuan I-T, Tzeng H-T, Chen J-Y. Signaling pathways of type I and type III interferons and targeted therapies in systemic lupus erythematosus. Cells. 2019;8(9):963. Available from: https://doi.org/10.3390/cells8090963
  34. Zipris D. Toll-like receptors and type 1 diabetes. In: Davis S, editor. The Islets of Langerhans. 2010; 585-610. Available from: https://doi.org/10.1007/978-90-481-3271-3_25
  35. Fillatreau S, Manfroi B, Dörner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(2):98-108. Available from: https://www.nature.com/articles/s41584-020-00544-4
  36. Su Y, Jia RL, Han L, Li ZG. Role of anti-nucleosome antibody in the diagnosis of systemic lupus erythematosus. Clin Immunol. 2007;122(1):115-120. Available from: https://doi.org/10.1016/j.clim.2006.10.003
  37. Anders HJ, Saxena R, Zhao MH, Parodis I, Salmon JE, Mohan C.. Lupus nephritis (Primer). Nat Rev Dis Primers. 2020;6(1):7. Available from: https://doi.org/10.1038/s41572-019-0141-9
  38. Aringer M, Smolen JS. Cytokine expression in lupus kidneys. Lupus. 2005;14(1):13-18. Available from: https://doi.org/10.1191/0961203305lu2053oa
  39. Dooley MA, Jayne D, Ginzler EM, Isenberg D, Olsen NJ, Wofsy D, et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N Engl J Med. 2011;365(20):1886-1895. Available from: https://doi.org/10.1056/nejmoa1014460
  40. Mok CC, Ying KY, Yim CW, Siu YP, Tong KH, To CH, et al. Tacrolimus versus mycophenolate mofetil for induction therapy of lupus nephritis: a randomised controlled trial and long-term follow-up. Ann Rheum Dis. 2016;75(1):30-36. Available from: https://doi.org/10.1136/annrheumdis-2014-206456
  41. Goldblatt F, Chambers S, Rahman A, Isenberg DA. Serious infections in British patients with systemic lupus erythematosus: hospitalisations and mortality. Lupus. 2009;18(8):682-689. Available from: https://doi.org/10.1177/0961203308101019
  42. Feng X, Zou Y, Pan W, Wang X, Wu M, Zhang M, et al. Associations of clinical features and prognosis with age at disease onset in patients with systemic lupus erythematosus. Lupus. 2014;23(3):327-334. Available from: https://doi.org/10.1177/0961203313513508
  43. Zhou P, Chen J, He J, Zheng T, Yunis J, Mak V, et al. Low-dose IL-2 therapy invigorates CD8+ T cells for viral control in systemic lupus erythematosus. PLoS Pathog. 2021;17(10). Available from: https://doi.org/10.1371/journal.ppat.1009858
  44. González-Echavarri C, Capdevila O, Espinosa G, Suárez S, Marín-Ballvé A, González-León R, et al. Infections in newly diagnosed Spanish patients with systemic lupus erythematosus: data from the RELES cohort. Lupus. 2018;27(14):2253-2261. Available from: https://doi.org/10.1177/0961203318811598

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?